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Abstract

Video instance segmentation is a comprehensive task re-
lated to the video understanding, dense prediction, and multi-
object tracking. OVIS is the first large-scale dataset for oc-
cluded video instance segmentation, where most objects are
more or less occluded in complicated scenes. In this work, we
enhance the existing sota method on OVIS, i.e., IDOL, and
achieve the first place on the 2nd Occluded Video Instance
Segmentation Challenge, Multiple Object Tracking, and Seg-
mentation in Complex Environments ECCV 2022 Workshop.

Introduction
Video instance segmentation aims at detecting, segment-
ing, and tracking object instances simultaneously in a given
video. It attracted considerable attention after first defined
(Yang, Fan, and Xu 2019) in 2019 due to the huge challenge
and the wide applications in video understanding, video edit-
ing, autonomous driving, augmented reality, etc.

In Defense of OnLine models, termed IDOL, is the SOTA
method which achieves 42.6 mAP on the validation set of
OVIS. It argues that the per-clip segmentation doesn’t out-
perform per-frame segmentation a lot in mask quality, and
mask quality is also not the reason for the poor performance
of online methods. We use the IDOL as our baseline frame-
work and refine the open-source repository to make the in-
ference process feasible. We also apply a stronger baseline,
i.e., CBNet (Liang et al. 2021) to improve our performance.

Furthermore, we propose the Semi-SWA (S2WA)
method. The S2WA method injects the pseudo-annotated
dataset into the conventional SWA training procedure, which
could guide the updating direction of model weight from the
training set to the unseen target set.

Related Works
Video Instance Segmentation evolves from Image Instance
Segmentation and aims to track objects from the whole
video sequence. The initial method Mask-Track R-CNN
(Yang, Fan, and Xu 2019) is built upon Mask R-CNN and
introduces a tracking head to associate each instance in the
video. SipMask (Cao et al. 2020) proposes a spatial preser-
vation module to generate spatial coefficients for mask pre-
dictions based on the one-stage FCOS. CrossVIS (Yang

et al. 2021) proposes a learning scheme that uses the in-
stance feature in the current frame to pixel-wisely localize
the same instance in other frames. SeqFormer (Wu et al.
2022a) dynamically allocates spatial attention on each frame
and learns a video-level instance embedding, which greatly
improves the performance. IDOL (Wu et al. 2022b) proposes
a temporally weighted softmax score for instance match-
ing and a memory bank-based association strategy to atain
a strong instance association and improve the association
quality of the online model, which can be applied to both
ongoing and long videos and complex scenarios.

Our Method
Refined IDOL
In Defense of OnLine models, termed IDOL, is the state-of-
art framework for video instance segmentation. In our ex-
periments, we use the IDOL as our baseline method and re-
fine the open-source code for higher inference efficiency and
lower storage overhead. To this end, we mainly optimize the
post-processing procedure in IDOL where the predictions in
each frame are filtered based on some pre-defined selection
thresholds and the predictions across multi frames are asso-
ciated to construct the final tracklets. Specifically, for each
frame i to be inferenced, the forward network would output
the information of N instances (e.g., N = 300 in IDOL).
For each predicted instance j, the located bounding box B,
dense pixel mask M, categorical logits L and instance-level
embedding f are bundled. After all frames in video v are
forwarded, we obtain the set of predicted instances:

Sv = {Si}M
v

i=1;Si = {(Bj ,Mj ,Lj , fj)}Nj=1,

where the Mv is the length of video v. The post-processing
function (PPF) accepts Sv and output the final result for
video v:

Rv = PPF(Sv, τ ) = {Tk}Kk=1,

where the τ is the list of hyper-parameters, Tk is the tracklet
for instance k and K is the number of final valid predicted
instances after post-processing.

There are three main steps in the post-processing proce-
dure: BBox-aware instance filter, Mask-aware instance fil-
ter, and Embedding-aware instance association. The first one
follows the conventional IoU-based Non-maximum Sup-
pression (NMS) (Girshick et al. 2013) strategy where a



classification threshold τ0 = 0.1 firstly truncates the low-
confidence predictions and then if the IoU between two
bounding boxes exceeds the threshold (e.g., 0.9 in IDOL),
the prediction with lower classification confidence will also
be eliminated. However, the sequential and recursive oper-
ations in NMS result in non-negligible latency. For mask
NMS in the second step, this drawback is further magni-
fied. Compared to the bounding box, it takes more time to
compute the IoU of each mask pair, thus leading to a large
overhead. We address this problem by introducing Matrix
NMS (Wang et al. 2020), which performs NMS with paral-
lel matrix operations in one shot.

Matrix NMS views the mask deduplication process by
considering how a predicted mask mj is being suppressed.
For mj , its decay factor is affected by: (a) The penalty of
each prediction mi on mj (si > sj), where si and sj are the
confidence scores; and (b) the probability of mi being sup-
pressed. For (a), the penalty of each prediction mi on mj

could be easily computed by f(ioui,j). For (b), the proba-
bility of mi being suppressed is not so elegant to be com-
puted. However, the probability usually has positive corre-
lation with the IoUs. So here we directly approximate the
probability by the most overlapped prediction on mi as

f(iou·,i) = min
∀sk>si

f(iouk,i),

To this end, the final decay factor becomes

decayj = min
∀si>sj

f(ioui,j)
f(iou.,i)

,

We use the linear decremented functions f(ioui,j) = 1 −
ioui,j and only the decayj larger than 0.5 will survive.

CBNet Backbone
Composite Backbone Network (CBNet) (Liang et al. 2021)
is a simple and novel composition approach to use exist-
ing pre-trained backbones under the pretraining fine-tuning
paradigm. Unlike most previous methods that focus on
modular crafting and require pre-training on ImageNet to
strengthen the representation, CBNet improves the exist-
ing backbone representation ability without additional pre-
training by grouping multiple identical backbones together.
Specifically, parallel backbones (named assisting backbones
and lead backbone) are connected via composite connec-
tions. The output of each stage in an assisting backbone
flows to the parallel and lower-level stages of its succeed-
ing sibling. Finally, the features of the lead backbone are
fed to the neck and detection head for bounding box regres-
sion and classification. In our experiment, we connect two
identical Swin-L backbones and use the pretraining weight
recommended in IDOL as our initial optimization point.

Stochastic Weight Averaging
Stochastic Weight Averaging (SWA) (Izmailov et al. 2018)
is proposed to achieve the wider solutions than the optima
found by SGD. The loss on the train set would be shifted
with respect to the test error. The SGD generally converges
to a point near the boundary of the wide flat region of op-
timal points. SWA on the other hand is able to find a point

centered in this region, often with slightly worse train loss
but with substantially better test error. In our experiment,
we firstly train the model for 12000 iterations and reduce
learning rate by a factor of 10 at the 8000 iterations. Then
we further train the model for 12000 iterations on the train-
ing set with cyclical learning rate, whose value linearly drop
from 1 × 10−4 to 0 for every 2000 iterations. We save the
checkpoint once the learning rate reaches 0.0 and 6 weights
are equally averaged to get the final SWA model.

Figure 1: We inject the pseudo-annotated dataset to the SWA
training procedure.

Semi-supervised Learning
To further improve the model’s performance, we use semi-
supervised learning on the validation set. To this end, we
generate the pseudo labels on the target datasets. To avoid
the adverse effect of the noisy pseudo annotations, we in-
crease the classification threshold τ0 from 0.1 to 0.5. Af-
ter this, we additionally inject the pseudo-annotated datasets
into the SWA training procedure as shown in Fig.1. We name
this training strategy Semi-SWA (S2WA), which combines
semi-supervised learning and stochastic weight averaging
together.

Experiments
We conduct ablation experiments on the validation set of
OVIS. The OVIS Consists of 296k high-quality instance
masks, 25 commonly seen semantic categories, 901 videos
with severe object occlusions, and 5,223 unique instances.
We use average precision (AP) at different intersection-over-
union (IoU) thresholds and average recall (AR) as our evalu-
ation metrics. The IoU in video instance segmentation is the
sum of the intersection area over the sum of the union area
across the video.

Empirical Results
As illustrated in Tab1, the superior CBNet backbone im-
prove the performance by 0.36. And the vanilla SWA train-
ing strategy further enhances the mAP to 42.81. Our pro-
posed S2WA strategy reaches the best performance, which
denotes the superiority of this method.



Method Swin-L CBNet SWA S2WA

mAP 41.39 41.75 42.81 43.81
∆mAP - +0.36 +1.06 +1.00

Table 1: The performance of different methods on the vali-
dation set.

Conclusions
In this paper, we refine the inference procedure of IDOL
using the matrix NMS method, which could parallelly re-
move the highly-overlapped mask. To further improve the
performance, we propose the Semi-SWA method, where the
pseudo-annotated datasets participate into the conventional
SWA training process. We achieve the first place on the 2nd
Occluded Video Instance Segmentation Challenge, Multi-
ple Object Tracking and Segmentation in Complex Environ-
ments ECCV 2022 Workshop.
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